Global Variome shared LOVD
GRN (granulin)
LOVD v.3.0 Build 30b [
Current LOVD status
]
Register as submitter
|
Log in
Curator:
Sara Mole
View all genes
View GRN gene homepage
View graphs about the GRN gene database
Create a new gene entry
View all transcripts
View all transcripts of gene GRN
Create a new transcript information entry
View all variants
View all variants affecting transcripts
View unique variants in gene GRN
View all variants in gene GRN
Full data view for gene GRN
Create a new data submission
View active genomic custom columns
Enable more genomic custom columns
View all individuals
View all individuals with variants in gene GRN
Create a new data submission
View active custom columns
Enable more custom columns
View all diseases
View all diseases associated with gene GRN
Create a new disease information entry
View available phenotype columns
View all screenings
View all screenings for gene GRN
Create a new data submission
View active custom columns
Enable more custom columns
Submit new data
All individuals with variants in gene GRN
Legend
Please note that a short description of a certain column can be displayed when you move your mouse cursor over the column's header and hold it still. Below, a more detailed description is shown per column.
ID_report
: ID of the individual that can be publically shared, e.g. as listed in a publication
Reference
: reference to publication describing the individual/family, possibly giving more phenotypic details than listed in this database entry, incl. link to PubMed or other source, e.g. "den Dunnen ASHG2003 P2346"
Remarks
: remarks about the individual
Gender
: gender individual
All options:
? = unknown
- = not applicable
F = female
M = male
rF = raised as female
rM = raised as male
Consanguinity
: indicates whether the parents are related (consanguineous), not related (non-consanguineous) or whether consanguinity is not known (unknown)
All options:
no = non-consanguineous parents
yes = consanguineous parents
likely = consanguinity likely
? = unknown
- = not applicable
Country
: where (country) does the individual live/recently came from. Give additional details (population, specific sub-group) and when parents come from different countries in "Population". Belgium = individual lives in/recently came from Belgium, (France) = reported by laboratory in France, individual's country of origin not sure
All options:
? (unknown)
- (not applicable)
Afghanistan
(Afghanistan)
Albania
(Albania)
Algeria
(Algeria)
American Samoa
(American Samoa)
Andorra
(Andorra)
Angola
(Angola)
Anguilla
(Anguilla)
Antarctica
(Antarctica)
Antigua and Barbuda
(Antigua and Barbuda)
Argentina
(Argentina)
Armenia
(Armenia)
Aruba
(Aruba)
Australia
(Australia)
Austria
(Austria)
Azerbaijan
(Azerbaijan)
Bahamas
(Bahamas)
Bahrain
(Bahrain)
Bangladesh
(Bangladesh)
Barbados
(Barbados)
Belarus
(Belarus)
Belgium
(Belgium)
Belize
(Belize)
Benin
(Benin)
Bermuda
(Bermuda)
Bhutan
(Bhutan)
Bolivia
(Bolivia)
Bosnia and Herzegovina
(Bosnia and Herzegovina)
Botswana
(Botswana)
Bouvet Island
(Bouvet Island)
Brazil
(Brazil)
British Indian Ocean Territory
(British Indian Ocean Territory)
Brunei Darussalam
(Brunei Darussalam)
Bulgaria
(Bulgaria)
Burkina Faso
(Burkina Faso)
Burundi
(Burundi)
Cambodia
(Cambodia)
Cameroon
(Cameroon)
Canada
(Canada)
Cape Verde
(Cape Verde)
Cayman Islands
(Cayman Islands)
Central African Republic
(Central African Republic)
Central Europe
Chad
(Chad)
Chile
(Chile)
China
(China)
Christmas Island
(Christmas Island)
Cocos (Keeling Islands)
(Cocos (Keeling Islands))
Colombia
(Colombia)
Comoros
(Comoros)
Congo
(Congo)
Cook Islands
(Cook Islands)
Costa Rica
(Costa Rica)
Cote D'Ivoire (Ivory Coast)
(Cote D'Ivoire (Ivory Coast))
Croatia (Hrvatska)
(Croatia (Hrvatska))
Cuba
(Cuba)
Cyprus
(Cyprus)
Czech Republic
(Czech Republic)
Denmark
(Denmark)
Djibouti
(Djibouti)
Dominica
(Dominica)
Dominican Republic
(Dominican Republic)
East Timor
(East Timor)
Ecuador
(Ecuador)
Egypt
(Egypt)
El Salvador
(El Salvador)
England
(England)
Equatorial Guinea
(Equatorial Guinea)
Eritrea
(Eritrea)
Estonia
(Estonia)
Ethiopia
(Ethiopia)
Falkland Islands (Malvinas)
(Falkland Islands (Malvinas))
Faroe Islands
(Faroe Islands)
Fiji
(Fiji)
Finland
(Finland)
France
(France)
Gabon
(Gabon)
Gambia
(Gambia)
Georgia
(Georgia)
Germany
(Germany)
Ghana
(Ghana)
Gibraltar
(Gibraltar)
Greece
(Greece)
Greenland
(Greenland)
Grenada
(Grenada)
Guadeloupe
(Guadeloupe)
Guam
(Guam)
Guatemala
(Guatemala)
Guiana, French
(Guiana, French)
Guinea
(Guinea)
Guinea-Bissau
(Guinea-Bissau)
Guyana
(Guyana)
Haiti
(Haiti)
Heard and McDonald Islands
(Heard and McDonald Islands)
Honduras
(Honduras)
Hong Kong
(Hong Kong)
Hungary
(Hungary)
Iceland
(Iceland)
India
(India)
Indonesia
(Indonesia)
Iran
(Iran)
Iraq
(Iraq)
Ireland
(Ireland)
Israel
(Israel)
Italy
(Italy)
Jamaica
(Jamaica)
Japan
(Japan)
Jordan
(Jordan)
Kazakhstan
(Kazakhstan)
Kenya
(Kenya)
Kiribati
(Kiribati)
Korea
(Korea)
Korea, North (People's Republic)
(Korea, North (People's Republic))
Korea, South (Republic)
(Korea, South (Republic))
Kosovo
(Kosovo)
Kuwait
(Kuwait)
Kyrgyzstan (Kyrgyz Republic)
(Kyrgyzstan (Kyrgyz Republic))
Laos
(Laos)
Latvia
(Latvia)
Lebanon
(Lebanon)
Lesotho
(Lesotho)
Liberia
(Liberia)
Libya
(Libya)
Liechtenstein
(Liechtenstein)
Lithuania
(Lithuania)
Luxembourg
(Luxembourg)
Macau
(Macau)
Macedonia
(Macedonia)
Madagascar
(Madagascar)
Malawi
(Malawi)
Malaysia
(Malaysia)
Maldives
(Maldives)
Mali
(Mali)
Mallorca
(Mallorca)
Malta
(Malta)
Marshall Islands
(Marshall Islands)
Martinique
(Martinique)
Mauritania
(Mauritania)
Mauritius
(Mauritius)
Mayotte
(Mayotte)
Mexico
(Mexico)
Micronesia
(Micronesia)
Moldova
(Moldova)
Monaco
(Monaco)
Mongolia
(Mongolia)
Montserrat
(Montserrat)
Morocco
(Morocco)
Mozambique
(Mozambique)
Myanmar
(Myanmar)
Namibia
(Namibia)
Nauru
(Nauru)
Nepal
(Nepal)
Netherlands
(Netherlands)
Netherlands Antilles
(Netherlands Antilles)
Neutral Zone (Saudia Arabia/Iraq)
(Neutral Zone (Saudia Arabia/Iraq))
New Caledonia
(New Caledonia)
New Zealand
(New Zealand)
Nicaragua
(Nicaragua)
Niger
(Niger)
Nigeria
(Nigeria)
Niue
(Niue)
Norfolk Island
(Norfolk Island)
Northern Ireland
(Northern Ireland)
Northern Mariana Islands
(Northern Mariana Islands)
Norway
(Norway)
Oman
(Oman)
Pakistan
(Pakistan)
Palau
(Palau)
Palestine
(Palestine)
Panama
(Panama)
Papua New Guinea
(Papua New Guinea)
Paraguay
(Paraguay)
Peru
(Peru)
Philippines
(Philippines)
Pitcairn
(Pitcairn)
Poland
(Poland)
Polynesia, French
(Polynesia, French)
Portugal
(Portugal)
Puerto Rico
(Puerto Rico)
Qatar
(Qatar)
Reunion
(Reunion)
Romania
(Romania)
Russia
(Russia)
Russian Federation
(Russian Federation)
Rwanda
(Rwanda)
S. Georgia and S. Sandwich Isls.
(S. Georgia and S. Sandwich Isls.)
Saint Kitts and Nevis
(Saint Kitts and Nevis)
Saint Lucia
(Saint Lucia)
Saint Vincent and The Grenadines
(Saint Vincent and The Grenadines)
Samoa
(Samoa)
San Marino
(San Marino)
Sao Tome and Principe
(Sao Tome and Principe)
Saudi Arabia
(Saudi Arabia)
Scotland
(Scotland)
Senegal
(Senegal)
Serbia
(Serbia)
Seychelles
(Seychelles)
Sierra Leone
(Sierra Leone)
Singapore
(Singapore)
Slovakia (Slovak Republic)
(Slovakia (Slovak Republic))
Slovenia
(Slovenia)
Solomon Islands
(Solomon Islands)
Somalia
(Somalia)
South Africa
(South Africa)
Southern Territories, French
(Southern Territories, French)
Soviet Union (former)
(Soviet Union (former))
Spain
(Spain)
Sri Lanka
(Sri Lanka)
St. Helena, Ascension and Tristan da
Cunha
(St. Helena, Ascension and Tristan da
Cunha)
St. Pierre and Miquelon
(St. Pierre and Miquelon)
Sudan
(Sudan)
Sudan, South
(Sudan, South)
Suriname
(Suriname)
Svalbard and Jan Mayen Islands
(Svalbard and Jan Mayen Islands)
Swaziland
(Swaziland)
Sweden
(Sweden)
Switzerland
(Switzerland)
Syria
(Syria)
Taiwan
(Taiwan)
Tajikistan
(Tajikistan)
Tanzania
(Tanzania)
Thailand
(Thailand)
Togo
(Togo)
Tokelau
(Tokelau)
Tonga
(Tonga)
Trinidad and Tobago
(Trinidad and Tobago)
Tunisia
(Tunisia)
Turkey
(Turkey)
Turkmenistan
(Turkmenistan)
Turks and Caicos Islands
(Turks and Caicos Islands)
Tuvalu
(Tuvalu)
Uganda
(Uganda)
Ukraine
(Ukraine)
United Arab Emirates
(United Arab Emirates)
United Kingdom (Great Britain)
(United Kingdom (Great Britain))
United States
(United States)
Uruguay
(Uruguay)
US Minor Outlying Islands
(US Minor Outlying Islands)
Uzbekistan
(Uzbekistan)
Vanuatu
(Vanuatu)
Vatican City State (Holy See)
(Vatican City State (Holy See))
Venezuela
(Venezuela)
Viet Nam
(Viet Nam)
Virgin Islands (British)
(Virgin Islands (British))
Virgin Islands (US)
(Virgin Islands (US))
Wales
(Wales)
Wallis and Futuna Islands
(Wallis and Futuna Islands)
Western Sahara
(Western Sahara)
Yemen
(Yemen)
Yugoslavia
(Yugoslavia)
Zaire
(Zaire)
Zambia
(Zambia)
Zimbabwe
(Zimbabwe)
Population
: population the individual (or ancestors) belongs to; e.g. white, gypsy, Jewish-Ashkenazi, Africa-N, Sardinia, etc.
Age at death
: age at which the individual deceased (when applicable):
35y = 35 years
>43y = still alive at 43y
04y08m = 4 years and 8 months
00y00m01d12h = 1 day and 12 hours
18y? = around 18 years
30y-40y = between 30 and 40 years
>54y = older than 54
? = unknown
VIP
: individual/phenotype VIP-status was requested for matchmaking - need collaboration(s) to crack the case - please contact the submitter/curator. NOTE: to get VIP status ask the curator.
Data_av
: are additional data available upon request: e.g. pedigree (yes/no/?)
Treatment
: treatment of patient
Variants in genes
: The individual has variants for this gene.
Panel size
: Number of individuals this entry represents; e.g. 1 for an individual, 5 for a family with 5 affected members.
How to query this table
All list views have search fields which can be used to search data. You can search for a complete word or you can search for a part of a search term. If you enclose two or more words in double quotes, LOVD will search for the combination of those words only exactly in the order you specify. Note that search terms are case-insensitive and that wildcards such as * are treated as normal text! For all options, like "and", "or", and "not" searches, or searching for prefixes or suffixes, see the table below.
Operator
Column type
Example
Matches
Text
Arg
all entries containing 'Arg'
space
Text
Arg Ser
all entries containing 'Arg' and 'Ser'
|
Text
Arg|Ser
all entries containing 'Arg' or 'Ser'
!
Text
!fs
all entries not containing 'fs'
^
Text
^p.(Arg
all entries beginning with 'p.(Arg'
$
Text
Ser)$
all entries ending with 'Ser)'
=""
Text
=""
all entries with this field empty
=""
Text
="p.0"
all entries exactly matching 'p.0'
!=""
Text
!=""
all entries with this field not empty
!=""
Text
!="p.0"
all entries not exactly matching 'p.0?'
combination
Text
*|Ter !fs
all entries containing '*' or 'Ter' but not containing 'fs'
Date
2020
all entries matching the year 2020
|
Date
2020-03|2020-04
all entries matching March or April, 2020
!
Date
!2020-03
all entries not matching March, 2020
<
Date
<2020
all entries before the year 2020
<=
Date
<=2020-06
all entries in or before June, 2020
>
Date
>2020-06
all entries after June, 2020
>=
Date
>=2020-06-15
all entries on or after June 15th, 2020
combination
Date
2019|2020 <2020-03
all entries in 2019 or 2020, and before March, 2020
Numeric
23
all entries exactly matching 23
|
Numeric
23|24
all entries exactly matching 23 or 24
!
Numeric
!23
all entries not exactly matching 23
<
Numeric
<23
all entries lower than 23
<=
Numeric
<=23
all entries lower than, or equal to, 23
>
Numeric
>23
all entries higher than 23
>=
Numeric
>=23
all entries higher than, or equal to, 23
combination
Numeric
>=20 <30 !23
all entries with values from 20 to 29, but not equal to 23
Some more advanced examples:
Example
Matches
Asian
all entries containing 'Asian', 'asian', including 'Caucasian', 'caucasian', etc.
Asian !Caucasian
all entries containing 'Asian' but not containing 'Caucasian'
Asian|African !Caucasian
all entries containing 'Asian' or 'African', but not containing 'Caucasian'
"South Asian"
all entries containing 'South Asian', but not containing 'South East Asian'
To sort on a certain column, click on the column header or on the arrows. If that column is already selected to sort on, the sort order will be swapped. The column currently sorted on has a darker blue background color than the other columns. The up and down arrows next to the column name indicate the current sorting direction. When sorting on any field other than the default, LOVD will sort secondarily on the default sort column.
279 entries on 3 pages. Showing entries 1 - 100.
10 per page
25 per page
50 per page
100 per page
Legend
How to query
« First
Prev
1
2
3
Next
Last »
Individual ID
ID_report
Reference
Remarks
Gender
Consanguinity
Country
Population
Age at death
VIP
Data_av
Treatment
Disease
Phenotype details
Variants
Panel size
Owner
00057197
-
-
-
-
-
Norway
-
-
-
-
-
PD
-
1
1
Zafar Iqbal
00057198
-
-
-
-
-
Norway
-
-
-
-
-
PD
-
1
1
Zafar Iqbal
00104698
22608501-Fam
PubMed: Smith 2012
,
Journal: Smith 2012
3-generation family, affected brother/sister, unaffected heterozygous carrier parents/relatives
F;M
-
Australia
Italy (Lombardy)
-
-
-
-
CLN
see paper; ..., NCL, retinopathy
1
2
Johan den Dunnen
00104699
22608501-Pat
PubMed: Smith 2012
,
Journal: Smith 2012
-
-
-
-
-
-
-
-
-
CLN
more likely FTLD-TDP; 46y-limb dystonia, spasticity, gait disturbance, apraxia, dementia; died around 48–49y
1
1
Johan den Dunnen
00148807
-
PubMed: Rogaeva EA 2001
PubMed: Amtul Z 2002
PubMed: Tang-Wai D 2002
The proband also carries the <a href=\""http://www.molgen.ua.ac.be/ADMutations/Default.cfm?MT=1&ML=0&Page=Mutations&ID=127"""">PSEN1 insR352</a> mutation""
-
-
-
-
74y06m
-
-
-
FTD
-
1
3
Marc Cruts
00148992
-
-
Also segregates the <A href=\""http://www.molgen.ua.ac.be/ADMutations/Default.cfm?MT=1&ML=0&Page=Mutations&ID=204"""">MAPT IVS10+29G>A</a> mutation""
-
-
Australia
-
59y06m
-
-
-
FTD
-
1
2
Marc Cruts
00149091
-
-
-
-
-
Netherlands
white
70y
-
-
-
FTD
-
1
12
Marc Cruts
00149092
-
-
-
-
-
Belgium
white
64y07m
-
-
-
FTD
-
1
11
Marc Cruts
00149093
-
-
-
-
-
Belgium
white
71y02m
-
-
-
FTD
-
1
11
Marc Cruts
00149094
-
-
-
-
-
Belgium
white
71y
-
-
-
FTD
-
1
7
Marc Cruts
00149095
-
-
-
-
-
Belgium
white
68y
-
-
-
FTD
-
1
1
Marc Cruts
00149096
-
-
-
-
-
Belgium
white
71y
-
-
-
FTD
-
1
2
Marc Cruts
00149097
-
-
-
-
-
Belgium
white
67y09m
-
-
-
FTD
-
1
3
Marc Cruts
00149098
-
-
-
-
-
Belgium
white
71y06m
-
-
-
FTD
-
1
2
Marc Cruts
00149099
-
-
-
-
-
Belgium
white
65y
-
-
-
FTD
-
1
2
Marc Cruts
00149100
-
-
-
-
-
Belgium
white
-
-
-
-
FTD
-
1
1
Marc Cruts
00149101
-
-
-
-
-
Belgium
white
-
-
-
-
FTD
-
1
1
Marc Cruts
00149102
-
-
-
-
-
Belgium
white
-
-
-
-
FTD
-
1
1
Marc Cruts
00149103
-
-
-
-
-
United States
white
-
-
-
-
FTD
-
1
1
Marc Cruts
00149104
-
-
-
-
-
Canada
white
64y
-
-
-
FTD
-
1
17
Marc Cruts
00149105
-
-
-
-
-
Canada
white
63y
-
-
-
FTD
-
1
6
Marc Cruts
00149106
-
-
-
-
-
United Kingdom (Great Britain)
white
66y
-
-
-
FTD
-
1
1
Marc Cruts
00149107
-
-
-
-
-
Canada
white
-
-
-
-
FTD
-
1
9
Marc Cruts
00149108
-
-
-
-
-
United States
white
-
-
-
-
?, FTD
-
1
3
Marc Cruts
00149109
-
-
-
-
-
Canada
white
71y
-
-
-
FTD
-
1
7
Marc Cruts
00149110
-
-
-
-
-
Canada
white
66y06m
-
-
-
FTD
-
1
10
Marc Cruts
00149111
-
-
-
-
-
United Kingdom (Great Britain)
white
68y10m
-
-
-
?, FTD
-
1
4
Marc Cruts
00149141
-
-
-
-
-
United States
white
-
-
-
-
?
-
1
1
Marc Cruts
00149142
-
-
Parents died at 66 and 70 years without signs of dementia
-
-
United States
white
56y
-
-
-
FTD
-
1
1
Marc Cruts
00149143
-
-
-
-
-
United States
white
65y06m
-
-
-
AD, FTD
-
1
2
Marc Cruts
00149144
-
-
-
-
-
United States
white
-
-
-
-
FTD
-
1
1
Marc Cruts
00149145
-
-
-
-
-
United States
white
-
-
-
-
?
-
1
1
Marc Cruts
00149146
-
-
-
-
-
Sweden
white
-
-
-
-
FTD
-
1
1
Marc Cruts
00149147
-
-
-
-
-
United States
white
63y
-
-
-
FTD
-
1
1
Marc Cruts
00149148
-
-
-
-
-
United States
white
76y
-
-
-
AD, FTD
-
1
1
Marc Cruts
00149149
-
-
-
-
-
United States
white
87y
-
-
-
FTD
-
1
1
Marc Cruts
00149150
-
-
-
-
-
United States
white
-
-
-
-
?
-
1
1
Marc Cruts
00149151
-
-
-
-
-
United States
white
66y
-
-
-
FTD
-
1
1
Marc Cruts
00149152
-
-
-
-
-
United States
white
68y
-
-
-
FTD
-
1
1
Marc Cruts
00149153
-
-
-
-
-
Canada
white
60y
-
-
-
FTD
-
1
2
Marc Cruts
00149154
-
-
One parent died at 56 y from unrelated illness
-
-
United States
white
61y
-
-
-
?
-
1
1
Marc Cruts
00149155
-
-
-
-
-
United States
white
72y
-
-
-
FTD
-
1
1
Marc Cruts
00149156
-
-
-
-
-
United States
white
53y
-
-
-
FTD
-
1
1
Marc Cruts
00149157
-
-
-
-
-
United States
white
61y
-
-
-
FTD
-
1
1
Marc Cruts
00149158
-
-
-
-
-
United States
white
65y
-
-
-
FTD
-
1
1
Marc Cruts
00149159
-
-
-
-
-
United States
white
-
-
-
-
?
-
1
1
Marc Cruts
00149160
-
-
-
-
-
United States
white
68y
-
-
-
FTD
-
1
1
Marc Cruts
00149161
-
-
-
-
-
United States
white
65y
-
-
-
FTD
-
1
1
Marc Cruts
00149162
-
-
-
-
-
United States
white
72y
-
-
-
?
-
1
3
Marc Cruts
00149163
-
-
-
-
-
United States
white
54y
-
-
-
FTD
-
1
1
Marc Cruts
00149164
-
-
-
-
-
United States
white
56y
-
-
-
FTD
-
1
1
Marc Cruts
00149165
-
-
-
-
-
United States
white
75y
-
-
-
?
-
1
1
Marc Cruts
00149166
-
-
-
-
-
United States
white
-
-
-
-
?
-
1
2
Marc Cruts
00149167
-
-
-
-
-
United States
white
59y
-
-
-
FTD
-
1
1
Marc Cruts
00149168
-
-
-
-
-
United States
white
60y
-
-
-
FTD
-
1
1
Marc Cruts
00149169
-
-
-
-
-
United States
white
-
-
-
-
?
-
1
1
Marc Cruts
00149170
-
-
-
-
-
United States
white
61y
-
-
-
FTD
-
1
1
Marc Cruts
00149171
-
-
-
-
-
United States
white
56y
-
-
-
FTD
-
1
1
Marc Cruts
00149172
-
-
-
-
-
United States
white
72y
-
-
-
FTD
-
1
1
Marc Cruts
00149180
-
-
-
-
-
United States
white (Central European Ancestry)
70y02m
-
-
-
FTD
-
1
26
Marc Cruts
00149181
-
-
-
-
-
United States
-
76y
-
-
-
FTD
-
1
1
Marc Cruts
00149182
-
-
-
-
-
United States
-
-
-
-
-
FTD
-
1
1
Marc Cruts
00149183
-
-
-
-
-
United States
-
-
-
-
-
FTD
-
1
1
Marc Cruts
00149188
-
-
-
-
-
Canada
Asian (Chinese Ancestry)
61y
-
-
-
?, DLB
-
1
2
Marc Cruts
00149189
-
-
The patient also carries the <a href=\""http://www.molgen.ua.ac.be/ADMutations/Default.cfm?MT=1&ML=0&Page=Mutations&ID=316"""">MAPT Ala239Thr</a> mutation""
-
-
United Kingdom (Great Britain)
white
-
-
-
-
FTD
-
1
1
Marc Cruts
00149190
-
-
-
-
-
Italy
white
66y06m
-
-
-
FTD
-
1
6
Marc Cruts
00149191
-
-
-
-
-
Italy
white
73y04m
-
-
-
?, MPD
-
1
5
Marc Cruts
00149200
-
-
-
-
-
Netherlands
white
70y09m
-
-
-
FTD
-
1
10
Marc Cruts
00149201
-
-
-
-
-
Netherlands
white
-
-
-
-
FTD
-
1
1
Marc Cruts
00149202
-
-
-
-
-
-
-
71y04m
-
-
-
FTD
-
1
3
Marc Cruts
00149203
-
-
-
-
-
United States
white
54y
-
-
-
FTD
-
1
1
Marc Cruts
00149208
-
-
-
-
-
Germany
white
-
-
-
-
ALS
-
1
1
Marc Cruts
00149209
-
-
-
-
-
-
-
63y
-
-
-
FTDALS
-
1
1
Marc Cruts
00149210
-
-
-
-
-
-
-
-
-
-
-
FTD
-
1
1
Marc Cruts
00149211
-
-
-
-
-
-
-
-
-
-
-
FTD
-
1
1
Marc Cruts
00149212
-
-
-
-
-
-
-
-
-
-
-
FTD
-
1
1
Marc Cruts
00149213
-
-
-
-
-
-
-
-
-
-
-
FTD
-
1
1
Marc Cruts
00149214
-
-
-
-
-
Sweden
white
-
-
-
-
ALS
-
1
1
Marc Cruts
00149215
-
-
-
-
-
France
white
-
-
-
-
FTD
-
1
1
Marc Cruts
00149216
-
-
-
-
-
France
white
63y
-
-
-
FTD
-
1
2
Marc Cruts
00149217
-
-
-
-
-
France
white
49y
-
-
-
FTD
-
1
1
Marc Cruts
00149218
-
-
-
-
-
France
white
61y
-
-
-
FTD
-
1
1
Marc Cruts
00149219
-
-
-
-
-
France
white
58y
-
-
-
FTD
-
1
1
Marc Cruts
00149220
-
-
-
-
-
France
white
74y
-
-
-
FTD
-
1
2
Marc Cruts
00149221
-
-
-
-
-
France
white
78y
-
-
-
FTD
-
1
1
Marc Cruts
00149222
-
-
-
-
-
France
white
85y
-
-
-
FTD
-
1
1
Marc Cruts
00149223
-
-
-
-
-
France
white
60y06m
-
-
-
FTD
-
1
3
Marc Cruts
00149224
-
-
-
-
-
France
white
68y
-
-
-
FTD
-
1
1
Marc Cruts
00149225
-
-
-
-
-
United States
white
65y04m
-
-
-
FTD
-
1
9
Marc Cruts
00149226
-
-
-
-
-
United States
white
68y07m
-
-
-
FTD
-
1
4
Marc Cruts
00149227
-
-
-
-
-
Spain
white
74y
-
-
-
FTD
-
1
1
Marc Cruts
00149230
-
-
-
-
-
United States
white (Chinese Ancestry)
-
-
-
-
FTD
-
1
2
Marc Cruts
00149236
-
-
Mutation absent in one family branch also segregating autosomal dominant frontotempral dementia (From Calabria, Italy)
-
-
Italy
white
70y
-
-
-
FTD
-
1
9
Marc Cruts
00149242
-
-
-
-
-
-
-
-
-
-
-
FTD
-
1
1
Marc Cruts
00149243
-
-
-
-
-
-
-
-
-
-
-
FTD
-
1
1
Marc Cruts
00149244
-
-
-
-
-
-
-
-
-
-
-
FTD
-
1
1
Marc Cruts
00149245
-
-
-
-
-
-
-
-
-
-
-
FTD
-
1
1
Marc Cruts
00149246
-
-
-
-
-
-
-
-
-
-
-
FTD
-
1
2
Marc Cruts
00149247
-
-
-
-
-
-
-
-
-
-
-
FTD
-
1
2
Marc Cruts
00149248
-
-
-
-
-
-
-
-
-
-
-
FTD
-
1
1
Marc Cruts
10 per page
25 per page
50 per page
100 per page
Legend
How to query
« First
Prev
1
2
3
Next
Last »
Screenscraping/webscraping (downloading large amounts of data using scripts) is strictly prohibited.
Use our
APIs
to retrieve data.
Powered by
LOVD v.3.0
Build 30b
LOVD software ©2004-2024
Leiden University Medical Center
Database contents © by their respective submitters and curators