Global Variome shared LOVD
MAPT (microtubule-associated protein tau)
LOVD v.3.0 Build 30b [
Current LOVD status
]
Register as submitter
|
Log in
Curator:
Global Variome, with Curator vacancy
View all genes
View MAPT gene homepage
View graphs about the MAPT gene database
Create a new gene entry
View all transcripts
View all transcripts of gene MAPT
Create a new transcript information entry
View all variants
View all variants affecting transcripts
View unique variants in gene MAPT
View all variants in gene MAPT
Full data view for gene MAPT
Create a new data submission
View active genomic custom columns
Enable more genomic custom columns
View all individuals
View all individuals with variants in gene MAPT
Create a new data submission
View active custom columns
Enable more custom columns
View all diseases
View all diseases associated with gene MAPT
Create a new disease information entry
View available phenotype columns
View all screenings
View all screenings for gene MAPT
Create a new data submission
View active custom columns
Enable more custom columns
Submit new data
All individuals with variants in gene MAPT
Legend
Please note that a short description of a certain column can be displayed when you move your mouse cursor over the column's header and hold it still. Below, a more detailed description is shown per column.
ID_report
: ID of the individual that can be publically shared, e.g. as listed in a publication
Reference
: reference to publication describing the individual/family, possibly giving more phenotypic details than listed in this database entry, incl. link to PubMed or other source, e.g. "den Dunnen ASHG2003 P2346"
Remarks
: remarks about the individual
Gender
: gender individual
All options:
? = unknown
- = not applicable
F = female
M = male
rF = raised as female
rM = raised as male
Consanguinity
: indicates whether the parents are related (consanguineous), not related (non-consanguineous) or whether consanguinity is not known (unknown)
All options:
no = non-consanguineous parents
yes = consanguineous parents
likely = consanguinity likely
? = unknown
- = not applicable
Country
: where (country) does the individual live/recently came from. Give additional details (population, specific sub-group) and when parents come from different countries in "Population". Belgium = individual lives in/recently came from Belgium, (France) = reported by laboratory in France, individual's country of origin not sure
All options:
? (unknown)
- (not applicable)
Afghanistan
(Afghanistan)
Albania
(Albania)
Algeria
(Algeria)
American Samoa
(American Samoa)
Andorra
(Andorra)
Angola
(Angola)
Anguilla
(Anguilla)
Antarctica
(Antarctica)
Antigua and Barbuda
(Antigua and Barbuda)
Argentina
(Argentina)
Armenia
(Armenia)
Aruba
(Aruba)
Australia
(Australia)
Austria
(Austria)
Azerbaijan
(Azerbaijan)
Bahamas
(Bahamas)
Bahrain
(Bahrain)
Bangladesh
(Bangladesh)
Barbados
(Barbados)
Belarus
(Belarus)
Belgium
(Belgium)
Belize
(Belize)
Benin
(Benin)
Bermuda
(Bermuda)
Bhutan
(Bhutan)
Bolivia
(Bolivia)
Bosnia and Herzegovina
(Bosnia and Herzegovina)
Botswana
(Botswana)
Bouvet Island
(Bouvet Island)
Brazil
(Brazil)
British Indian Ocean Territory
(British Indian Ocean Territory)
Brunei Darussalam
(Brunei Darussalam)
Bulgaria
(Bulgaria)
Burkina Faso
(Burkina Faso)
Burundi
(Burundi)
Cambodia
(Cambodia)
Cameroon
(Cameroon)
Canada
(Canada)
Cape Verde
(Cape Verde)
Cayman Islands
(Cayman Islands)
Central African Republic
(Central African Republic)
Central Europe
Chad
(Chad)
Chile
(Chile)
China
(China)
Christmas Island
(Christmas Island)
Cocos (Keeling Islands)
(Cocos (Keeling Islands))
Colombia
(Colombia)
Comoros
(Comoros)
Congo
(Congo)
Cook Islands
(Cook Islands)
Costa Rica
(Costa Rica)
Cote D'Ivoire (Ivory Coast)
(Cote D'Ivoire (Ivory Coast))
Croatia (Hrvatska)
(Croatia (Hrvatska))
Cuba
(Cuba)
Cyprus
(Cyprus)
Czech Republic
(Czech Republic)
Denmark
(Denmark)
Djibouti
(Djibouti)
Dominica
(Dominica)
Dominican Republic
(Dominican Republic)
East Timor
(East Timor)
Ecuador
(Ecuador)
Egypt
(Egypt)
El Salvador
(El Salvador)
England
(England)
Equatorial Guinea
(Equatorial Guinea)
Eritrea
(Eritrea)
Estonia
(Estonia)
Ethiopia
(Ethiopia)
Falkland Islands (Malvinas)
(Falkland Islands (Malvinas))
Faroe Islands
(Faroe Islands)
Fiji
(Fiji)
Finland
(Finland)
France
(France)
Gabon
(Gabon)
Gambia
(Gambia)
Georgia
(Georgia)
Germany
(Germany)
Ghana
(Ghana)
Gibraltar
(Gibraltar)
Greece
(Greece)
Greenland
(Greenland)
Grenada
(Grenada)
Guadeloupe
(Guadeloupe)
Guam
(Guam)
Guatemala
(Guatemala)
Guiana, French
(Guiana, French)
Guinea
(Guinea)
Guinea-Bissau
(Guinea-Bissau)
Guyana
(Guyana)
Haiti
(Haiti)
Heard and McDonald Islands
(Heard and McDonald Islands)
Honduras
(Honduras)
Hong Kong
(Hong Kong)
Hungary
(Hungary)
Iceland
(Iceland)
India
(India)
Indonesia
(Indonesia)
Iran
(Iran)
Iraq
(Iraq)
Ireland
(Ireland)
Israel
(Israel)
Italy
(Italy)
Jamaica
(Jamaica)
Japan
(Japan)
Jordan
(Jordan)
Kazakhstan
(Kazakhstan)
Kenya
(Kenya)
Kiribati
(Kiribati)
Korea
(Korea)
Korea, North (People's Republic)
(Korea, North (People's Republic))
Korea, South (Republic)
(Korea, South (Republic))
Kosovo
(Kosovo)
Kuwait
(Kuwait)
Kyrgyzstan (Kyrgyz Republic)
(Kyrgyzstan (Kyrgyz Republic))
Laos
(Laos)
Latvia
(Latvia)
Lebanon
(Lebanon)
Lesotho
(Lesotho)
Liberia
(Liberia)
Libya
(Libya)
Liechtenstein
(Liechtenstein)
Lithuania
(Lithuania)
Luxembourg
(Luxembourg)
Macau
(Macau)
Macedonia
(Macedonia)
Madagascar
(Madagascar)
Malawi
(Malawi)
Malaysia
(Malaysia)
Maldives
(Maldives)
Mali
(Mali)
Mallorca
(Mallorca)
Malta
(Malta)
Marshall Islands
(Marshall Islands)
Martinique
(Martinique)
Mauritania
(Mauritania)
Mauritius
(Mauritius)
Mayotte
(Mayotte)
Mexico
(Mexico)
Micronesia
(Micronesia)
Moldova
(Moldova)
Monaco
(Monaco)
Mongolia
(Mongolia)
Montserrat
(Montserrat)
Morocco
(Morocco)
Mozambique
(Mozambique)
Myanmar
(Myanmar)
Namibia
(Namibia)
Nauru
(Nauru)
Nepal
(Nepal)
Netherlands
(Netherlands)
Netherlands Antilles
(Netherlands Antilles)
Neutral Zone (Saudia Arabia/Iraq)
(Neutral Zone (Saudia Arabia/Iraq))
New Caledonia
(New Caledonia)
New Zealand
(New Zealand)
Nicaragua
(Nicaragua)
Niger
(Niger)
Nigeria
(Nigeria)
Niue
(Niue)
Norfolk Island
(Norfolk Island)
Northern Ireland
(Northern Ireland)
Northern Mariana Islands
(Northern Mariana Islands)
Norway
(Norway)
Oman
(Oman)
Pakistan
(Pakistan)
Palau
(Palau)
Palestine
(Palestine)
Panama
(Panama)
Papua New Guinea
(Papua New Guinea)
Paraguay
(Paraguay)
Peru
(Peru)
Philippines
(Philippines)
Pitcairn
(Pitcairn)
Poland
(Poland)
Polynesia, French
(Polynesia, French)
Portugal
(Portugal)
Puerto Rico
(Puerto Rico)
Qatar
(Qatar)
Reunion
(Reunion)
Romania
(Romania)
Russia
(Russia)
Russian Federation
(Russian Federation)
Rwanda
(Rwanda)
S. Georgia and S. Sandwich Isls.
(S. Georgia and S. Sandwich Isls.)
Saint Kitts and Nevis
(Saint Kitts and Nevis)
Saint Lucia
(Saint Lucia)
Saint Vincent and The Grenadines
(Saint Vincent and The Grenadines)
Samoa
(Samoa)
San Marino
(San Marino)
Sao Tome and Principe
(Sao Tome and Principe)
Saudi Arabia
(Saudi Arabia)
Scotland
(Scotland)
Senegal
(Senegal)
Serbia
(Serbia)
Seychelles
(Seychelles)
Sierra Leone
(Sierra Leone)
Singapore
(Singapore)
Slovakia (Slovak Republic)
(Slovakia (Slovak Republic))
Slovenia
(Slovenia)
Solomon Islands
(Solomon Islands)
Somalia
(Somalia)
South Africa
(South Africa)
Southern Territories, French
(Southern Territories, French)
Soviet Union (former)
(Soviet Union (former))
Spain
(Spain)
Sri Lanka
(Sri Lanka)
St. Helena, Ascension and Tristan da
Cunha
(St. Helena, Ascension and Tristan da
Cunha)
St. Pierre and Miquelon
(St. Pierre and Miquelon)
Sudan
(Sudan)
Sudan, South
(Sudan, South)
Suriname
(Suriname)
Svalbard and Jan Mayen Islands
(Svalbard and Jan Mayen Islands)
Swaziland
(Swaziland)
Sweden
(Sweden)
Switzerland
(Switzerland)
Syria
(Syria)
Taiwan
(Taiwan)
Tajikistan
(Tajikistan)
Tanzania
(Tanzania)
Thailand
(Thailand)
Togo
(Togo)
Tokelau
(Tokelau)
Tonga
(Tonga)
Trinidad and Tobago
(Trinidad and Tobago)
Tunisia
(Tunisia)
Turkey
(Turkey)
Turkmenistan
(Turkmenistan)
Turks and Caicos Islands
(Turks and Caicos Islands)
Tuvalu
(Tuvalu)
Uganda
(Uganda)
Ukraine
(Ukraine)
United Arab Emirates
(United Arab Emirates)
United Kingdom (Great Britain)
(United Kingdom (Great Britain))
United States
(United States)
Uruguay
(Uruguay)
US Minor Outlying Islands
(US Minor Outlying Islands)
Uzbekistan
(Uzbekistan)
Vanuatu
(Vanuatu)
Vatican City State (Holy See)
(Vatican City State (Holy See))
Venezuela
(Venezuela)
Viet Nam
(Viet Nam)
Virgin Islands (British)
(Virgin Islands (British))
Virgin Islands (US)
(Virgin Islands (US))
Wales
(Wales)
Wallis and Futuna Islands
(Wallis and Futuna Islands)
Western Sahara
(Western Sahara)
Yemen
(Yemen)
Yugoslavia
(Yugoslavia)
Zaire
(Zaire)
Zambia
(Zambia)
Zimbabwe
(Zimbabwe)
Population
: population the individual (or ancestors) belongs to; e.g. white, gypsy, Jewish-Ashkenazi, Africa-N, Sardinia, etc.
Age at death
: age at which the individual deceased (when applicable):
35y = 35 years
>43y = still alive at 43y
04y08m = 4 years and 8 months
00y00m01d12h = 1 day and 12 hours
18y? = around 18 years
30y-40y = between 30 and 40 years
>54y = older than 54
? = unknown
VIP
: individual/phenotype VIP-status was requested for matchmaking - need collaboration(s) to crack the case - please contact the submitter/curator. NOTE: to get VIP status ask the curator.
Data_av
: are additional data available upon request: e.g. pedigree (yes/no/?)
Treatment
: treatment of patient
Variants in genes
: The individual has variants for this gene.
Panel size
: Number of individuals this entry represents; e.g. 1 for an individual, 5 for a family with 5 affected members.
How to query this table
All list views have search fields which can be used to search data. You can search for a complete word or you can search for a part of a search term. If you enclose two or more words in double quotes, LOVD will search for the combination of those words only exactly in the order you specify. Note that search terms are case-insensitive and that wildcards such as * are treated as normal text! For all options, like "and", "or", and "not" searches, or searching for prefixes or suffixes, see the table below.
Operator
Column type
Example
Matches
Text
Arg
all entries containing 'Arg'
space
Text
Arg Ser
all entries containing 'Arg' and 'Ser'
|
Text
Arg|Ser
all entries containing 'Arg' or 'Ser'
!
Text
!fs
all entries not containing 'fs'
^
Text
^p.(Arg
all entries beginning with 'p.(Arg'
$
Text
Ser)$
all entries ending with 'Ser)'
=""
Text
=""
all entries with this field empty
=""
Text
="p.0"
all entries exactly matching 'p.0'
!=""
Text
!=""
all entries with this field not empty
!=""
Text
!="p.0"
all entries not exactly matching 'p.0?'
combination
Text
*|Ter !fs
all entries containing '*' or 'Ter' but not containing 'fs'
Date
2020
all entries matching the year 2020
|
Date
2020-03|2020-04
all entries matching March or April, 2020
!
Date
!2020-03
all entries not matching March, 2020
<
Date
<2020
all entries before the year 2020
<=
Date
<=2020-06
all entries in or before June, 2020
>
Date
>2020-06
all entries after June, 2020
>=
Date
>=2020-06-15
all entries on or after June 15th, 2020
combination
Date
2019|2020 <2020-03
all entries in 2019 or 2020, and before March, 2020
Numeric
23
all entries exactly matching 23
|
Numeric
23|24
all entries exactly matching 23 or 24
!
Numeric
!23
all entries not exactly matching 23
<
Numeric
<23
all entries lower than 23
<=
Numeric
<=23
all entries lower than, or equal to, 23
>
Numeric
>23
all entries higher than 23
>=
Numeric
>=23
all entries higher than, or equal to, 23
combination
Numeric
>=20 <30 !23
all entries with values from 20 to 29, but not equal to 23
Some more advanced examples:
Example
Matches
Asian
all entries containing 'Asian', 'asian', including 'Caucasian', 'caucasian', etc.
Asian !Caucasian
all entries containing 'Asian' but not containing 'Caucasian'
Asian|African !Caucasian
all entries containing 'Asian' or 'African', but not containing 'Caucasian'
"South Asian"
all entries containing 'South Asian', but not containing 'South East Asian'
To sort on a certain column, click on the column header or on the arrows. If that column is already selected to sort on, the sort order will be swapped. The column currently sorted on has a darker blue background color than the other columns. The up and down arrows next to the column name indicate the current sorting direction. When sorting on any field other than the default, LOVD will sort secondarily on the default sort column.
159 entries on 2 pages. Showing entries 1 - 100.
10 per page
25 per page
50 per page
100 per page
Legend
How to query
« First
Prev
1
2
Next
Last »
Individual ID
ID_report
Reference
Remarks
Gender
Consanguinity
Country
Population
Age at death
VIP
Data_av
Treatment
Disease
Phenotype details
Variants
Panel size
Owner
00057199
-
-
-
-
-
Norway
-
-
-
-
-
PD
-
1
1
Zafar Iqbal
00057200
-
-
-
-
-
Norway
-
-
-
-
-
PD
-
1
3
Zafar Iqbal
00057202
-
-
-
-
-
Norway
-
-
-
-
-
PD
-
1
3
Zafar Iqbal
00057203
-
-
-
-
-
Norway
-
-
-
-
-
PD
-
1
2
Zafar Iqbal
00057204
-
-
-
-
-
Norway
-
-
-
-
-
PD
-
1
1
Zafar Iqbal
00057205
-
-
-
-
-
Norway
-
-
-
-
-
PD
-
1
1
Zafar Iqbal
00057206
-
-
-
-
-
Norway
-
-
-
-
-
PD
-
1
5
Zafar Iqbal
00057207
-
-
-
-
-
Norway
-
-
-
-
-
PD
-
1
1
Zafar Iqbal
00132795
24292008-Fam
PubMed: Iovino 2014
3-generation family, affected mother
F
-
United Kingdom (Great Britain)
-
68y
-
-
-
FTD
see paper; ..., FTDP-17T, rapidly progressive
1
1
Johan den Dunnen
00148897
-
-
-
-
-
-
-
83y06m
-
-
-
FTD
Late Onset
1
1
Marc Cruts
00148898
-
-
-
-
-
-
-
67y
-
-
-
?
-
1
1
Marc Cruts
00148899
-
-
De novo mutation?
-
-
United Kingdom (Great Britain)
white
51y
-
-
-
FTD
-
1
1
Marc Cruts
00148900
-
-
-
-
-
United Kingdom (Great Britain)
white
51y
-
-
-
FTD
-
1
1
Marc Cruts
00148901
-
-
-
-
-
-
-
77y
-
-
-
FTD
-
1
1
Marc Cruts
00148902
-
-
-
-
-
Japan
Asian
38y
-
-
-
FTD
-
1
3
Marc Cruts
00148903
-
-
-
-
-
-
-
-
-
-
-
FTD
-
1
1
Marc Cruts
00148904
-
-
-
-
-
Netherlands
white
54y09m
-
-
-
FTD
-
1
34
Marc Cruts
00148905
-
-
-
-
-
United States
white
-
-
-
-
FTD
-
1
36
Marc Cruts
00148906
-
-
-
-
-
Japan
Asian
49y
-
-
-
?
-
1
4
Marc Cruts
00148907
-
-
-
-
-
France
white
48y
-
-
-
?
Dementia
1
3
Marc Cruts
00148908
-
-
-
-
-
Japan
Asian
-
-
-
-
FTD
-
1
1
Marc Cruts
00148909
-
-
-
-
-
Japan
Asian
53y06m
-
-
-
FTD, PD
-
1
2
Marc Cruts
00148910
-
-
-
-
-
-
-
45y06m
-
-
-
?
-
1
3
Marc Cruts
00148911
-
-
-
-
-
-
-
62y
-
-
-
FTD
-
1
6
Marc Cruts
00148912
-
-
No family history of dementia. Father diagnosed with Parkinson's disease
-
-
Netherlands
white
-
-
-
-
FTD
-
1
1
Marc Cruts
00148913
-
-
-
-
-
-
-
64y04m
-
-
-
FTD
-
1
4
Marc Cruts
00148914
-
-
One individual homozygous for the mutant allele
-
-
Spain
white
42y
-
-
-
?
-
1
2
Marc Cruts
00148915
-
-
-
-
-
Japan
Asian
-
-
-
-
FTD, PD
-
1
1
Marc Cruts
00148916
-
-
-
-
-
Italy
white
36y
-
-
-
?, FTD
-
1
2
Marc Cruts
00148917
-
-
-
-
-
-
white
34y06m
-
-
-
FTD, PD
Epileptic Seizures
1
3
Marc Cruts
00148918
-
-
-
-
-
Japan
Asian
40y
-
-
-
FTD
-
1
2
Marc Cruts
00148919
-
-
-
-
-
United Kingdom (Great Britain)
white
-
-
-
-
FTD
-
1
1
Marc Cruts
00148920
-
-
-
-
-
-
-
41y
-
-
-
FTD
-
1
3
Marc Cruts
00148921
-
-
-
-
-
-
-
57y
-
-
-
?
-
1
2
Marc Cruts
00148922
-
-
-
-
-
-
-
-
-
-
-
FTD
-
1
30
Marc Cruts
00148923
-
-
-
-
-
Japan
Asian
38y
-
-
-
FTD
-
1
3
Marc Cruts
00148924
-
-
-
-
-
Japan
Asian
44y
-
-
-
Picks
-
1
2
Marc Cruts
00148925
-
-
Proof of non-penetrance
-
-
Netherlands
white
62y
-
-
-
FTD
-
1
4
Marc Cruts
00148926
-
-
Suggestive for non-penetrance
-
-
Netherlands
white
33y
-
-
-
FTD
-
1
4
Marc Cruts
00148927
-
-
-
-
-
Netherlands
white
53y
-
-
-
FTD
-
1
1
Marc Cruts
00148928
-
-
-
-
-
United States
white
66y11m
-
-
-
FTD
-
1
13
Marc Cruts
00148929
-
-
-
-
-
-
-
50y
-
-
-
FTD
-
1
2
Marc Cruts
00148930
-
-
-
-
-
United Kingdom (Great Britain)
white
31y06m
-
-
-
?
-
1
2
Marc Cruts
00148931
-
-
-
-
-
Germany
white
61y
-
-
-
FTD
-
1
1
Marc Cruts
00148932
-
-
Family history of dementia, but both parents of proband died unaffected. Incomplete penetrance or non-paternity?
-
-
Italy
white
42y04m
-
-
-
FTD
-
1
2
Marc Cruts
00148933
-
-
Possible de novo mutation
-
-
United Kingdom (Great Britain)
white
37y
-
-
-
FTD
-
1
1
Marc Cruts
00148934
-
-
-
-
-
United States
-
-
-
-
-
AD, FTD
-
1
6
Marc Cruts
00148935
-
-
-
-
-
Netherlands
white
75y05m
-
-
-
AD, FTD
-
1
2
Marc Cruts
00148936
-
-
-
-
-
Netherlands
white
-
-
-
-
AD, FTD
-
1
1
Marc Cruts
00148937
-
-
Might be wrong mutation numbering (C to T base change was reported)
-
-
Japan
Asian
56y06m
-
-
-
FTD
-
1
1
Marc Cruts
00148938
-
-
-
-
-
Belgium
white
71y07m
-
-
-
AD
-
1
15
Marc Cruts
00148939
-
-
-
-
-
Netherlands
white
58y07m
-
-
-
FTD
-
1
18
Marc Cruts
00148940
-
-
-
-
-
United States
-
-
-
-
-
FTD
-
1
3
Marc Cruts
00148941
-
-
-
-
-
Canada
white (French Canada)
65y04m
-
-
-
FTD
-
1
6
Marc Cruts
00148942
-
-
-
-
-
France
white
-
-
-
-
FTD
-
1
8
Marc Cruts
00148943
-
-
-
-
-
France
white
-
-
-
-
FTD
-
1
6
Marc Cruts
00148944
-
-
-
-
-
France
white
-
-
-
-
FTD
-
1
11
Marc Cruts
00148945
-
-
-
-
-
France
white
-
-
-
-
FTD
-
1
5
Marc Cruts
00148946
-
-
-
-
-
France
white
-
-
-
-
FTD
-
1
3
Marc Cruts
00148947
-
-
-
-
-
France
white
-
-
-
-
FTD
-
1
4
Marc Cruts
00148948
-
-
-
-
-
Netherlands
white
61y
-
-
-
FTD
-
1
1
Marc Cruts
00148949
-
-
-
-
-
Netherlands
white
55y09m
-
-
-
FTD
-
1
1
Marc Cruts
00148950
-
-
-
-
-
United States
-
-
-
-
-
FTD
-
1
1
Marc Cruts
00148951
-
-
-
-
-
United States
-
-
-
-
-
FTD
-
1
1
Marc Cruts
00148952
-
-
-
-
-
United States
-
-
-
-
-
FTD
-
1
1
Marc Cruts
00148953
-
-
-
-
-
Japan
Asian
62y
-
-
-
FTD
-
1
4
Marc Cruts
00148954
-
-
-
-
-
Italy
white
-
-
-
-
FTD
-
1
7
Marc Cruts
00148955
-
-
-
-
-
Canada
white (French Canada)
-
-
-
-
FTD
-
1
1
Marc Cruts
00148956
-
-
-
-
-
-
white
-
-
-
-
FTD, PD
-
1
2
Marc Cruts
00148957
-
-
-
-
-
United Kingdom (Great Britain); Canada
white (French Canada)
56y04m
-
-
-
FTD
-
1
6
Marc Cruts
00148958
-
-
-
-
-
United Kingdom (Great Britain); Canada
white (French Canada)
68y04m
-
-
-
FTD
-
1
15
Marc Cruts
00148959
-
-
-
-
-
United Kingdom (Great Britain); Canada
white (French Canada)
72y04m
-
-
-
FTD
-
1
5
Marc Cruts
00148960
-
-
-
-
-
United States
-
55y06m
-
-
-
FTD
-
1
3
Marc Cruts
00148961
-
-
-
-
-
-
Far East
-
-
-
-
FTD
-
1
1
Marc Cruts
00148962
-
-
-
-
-
-
-
-
-
-
-
FTD, PD
-
1
1
Marc Cruts
00148963
-
-
-
-
-
-
-
59y04m
-
-
-
?, FTD
-
1
24
Marc Cruts
00148964
-
-
-
-
-
United Kingdom (Great Britain)
white
42y
-
-
-
FTD, PD
-
1
1
Marc Cruts
00148965
-
-
-
-
-
Japan
Asian
54y
-
-
-
FTD, PD
-
1
1
Marc Cruts
00148966
-
-
-
-
-
Japan
Asian
65y
-
-
-
FTD
-
1
7
Marc Cruts
00148967
-
-
-
-
-
United Kingdom (Great Britain)
white
69y04m
-
-
-
FTD
-
1
3
Marc Cruts
00148968
-
-
-
-
-
Ireland
white
-
-
-
-
FTD
-
1
13
Marc Cruts
00148969
-
-
-
-
-
United Kingdom (Great Britain)
white
-
-
-
-
FTD
-
1
1
Marc Cruts
00148970
-
-
-
-
-
Australia
white
62y
-
-
-
FTD
-
1
28
Marc Cruts
00148971
-
-
-
-
-
United Kingdom (Great Britain)
white
61y06m
-
-
-
FTD
-
1
2
Marc Cruts
00148972
-
-
-
-
-
United Kingdom (Great Britain)
white
60y02m
-
-
-
FTD
-
1
4
Marc Cruts
00148973
-
-
-
-
-
United Kingdom (Great Britain)
white
57y
-
-
-
FTD
-
1
3
Marc Cruts
00148974
-
-
-
-
-
United Kingdom (Great Britain)
white
63y
-
-
-
FTD
-
1
1
Marc Cruts
00148975
-
-
-
-
-
United Kingdom (Great Britain)
white
58y
-
-
-
FTD
-
1
1
Marc Cruts
00148976
-
-
-
-
-
United Kingdom (Great Britain)
white
62y
-
-
-
FTD
-
1
1
Marc Cruts
00148977
-
-
-
-
-
United Kingdom (Great Britain)
white
59y02m
-
-
-
FTD
-
1
1
Marc Cruts
00148978
-
-
-
-
-
United Kingdom (Great Britain)
white
-
-
-
-
FTD
-
1
1
Marc Cruts
00148979
-
-
-
-
-
United States
-
-
-
-
-
FTD
-
1
3
Marc Cruts
00148980
-
-
-
-
-
United Kingdom (Great Britain)
white
57y01m
-
-
-
FTD
-
1
9
Marc Cruts
00148981
-
-
-
-
-
United Kingdom (Great Britain)
white
58y04m
-
-
-
FTD
-
1
3
Marc Cruts
00148982
-
-
-
-
-
United Kingdom (Great Britain)
white
60y04m
-
-
-
FTD
-
1
3
Marc Cruts
00148983
-
-
-
-
-
United Kingdom (Great Britain)
white
59y
-
-
-
FTD
-
1
5
Marc Cruts
00148984
-
-
-
-
-
United Kingdom (Great Britain)
white
67y
-
-
-
FTD
-
1
3
Marc Cruts
00148985
-
-
-
-
-
United Kingdom (Great Britain)
white
62y
-
-
-
FTD
-
1
1
Marc Cruts
00148986
-
-
-
-
-
United Kingdom (Great Britain)
white
68y
-
-
-
FTD
-
1
1
Marc Cruts
00148987
-
-
-
-
-
United Kingdom (Great Britain)
white
65y06m
-
-
-
FTD
-
1
3
Marc Cruts
10 per page
25 per page
50 per page
100 per page
Legend
How to query
« First
Prev
1
2
Next
Last »
Screenscraping/webscraping (downloading large amounts of data using scripts) is strictly prohibited.
Use our
APIs
to retrieve data.
Powered by
LOVD v.3.0
Build 30b
LOVD software ©2004-2024
Leiden University Medical Center
Database contents © by their respective submitters and curators